On the Number of 1-Perfect Binary Codes: A Lower Bound

نویسندگان

  • Denis S. Krotov
  • Sergey V. Avgustinovich
چکیده

We present a construction of 1-perfect binary codes, which gives a new lower bound on the number of such codes. We conjecture that this lower bound is asymptotically tight.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The (non-)existence of perfect codes in Lucas cubes

A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...

متن کامل

On the structure of non-full-rank perfect codes

On the structure of non-full-rank perfect codes Denis S. Krotov Sobolev Institute of Mathematics and Mechanics and Mathematics Department, Novosibirsk State University Novosibirsk, Russia The Krotov combining construction of perfect 1-error-correcting binary codes from 2000 and a theorem of Heden saying that every non-full-rank perfect 1-errorcorrecting binary code can be constructed by this co...

متن کامل

On the structure of non-full-rank perfect q-ary codes

The Krotov combining construction of perfect 1-error-correcting binary codes from 2000 and a theorem of Heden saying that every non-full-rank perfect 1-errorcorrecting binary code can be constructed by this combining construction is generalized to the q-ary case. Simply, every non-full-rank perfect code C is the union of a well-defined family of μ̄-components Kμ̄, where μ̄ belongs to an “outer” pe...

متن کامل

Perfect binary codes: constructions, properties, and enumeration

Properties of nonlinear perfect binary codes are investigated and several new constructions of perfect codes are derived from these properties. An upper bound on the cardinality of the intersection of two perfect codes of length n is presented, and perfect codes whose intersection attains the upper bound are constructed for all n. As an immediate consequence of the proof of the upper bound we o...

متن کامل

Full-Rank Perfect Codes over Finite Fields

In this paper, we propose a construction of fullrank q-ary 1-perfect codes over finite fields. This construction is a generalization of the Etzion and Vardy construction of fullrank binary 1-perfect codes (1994). Properties of i-components of q-ary Hamming codes are investigated and the construction of full-rank q-ary 1-perfect codes is based on these properties. The switching construction of 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2008